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Abstract: In the theoretical research of chaotic dynamical system, the different type of bifurcations is a very 
interesting powerful tool for analyzing the qualitative behavior of chaotic dynamical system, this short paper deals 
with the existence of symmetric chaotic attractors and some different type of bifurcations such as symmetry 
bifurcation, flip bifurcation, Hopf bifurcation and symmetry breaking bifurcation of a simple two-dimensional 
symmetry discrete chaotic map of the plane with cubic non-linearity. The dynamical behaviors of the map are 
investigated by mathematical analysis and simulated numerically using package of Matlab. We compute numerically 
the bifurcation diagram and largest Lyapunov exponent and phase portraits. The research results indicate that there 
are interesting nonlinear physical phenomena in this simple two-dimensional symmetry discrete cubic map of the 
plane, such as symmetry bifurcation, flip bifurcation, Hopf bifurcation, symmetry breaking bifurcation, and 
symmetric attractors. The important non-linear physical phenomena obtained in this paper would benefit the study 
of the cubic chaotic map and the development of the theory of chaotic discrete dynamical systems. 
 
Keywords: Two-dimensional symmetry cubic map, flip bifurcation, symmetry-breaking bifurcation, Hopf 
bifurcation, symmetric attractors. 

1. Introduction 
 
Chaos or sensitive dependence on initial conditions, as a most fascinating phenomenon in non-linear dynamical 
systems has been intensively studied over the past few decades1-2-10. Chaos or chaotic behavior has been very useful 
in many fields. Many researches in continuous and discrete systems have been studied by this approach, such as 
biological systems3-4-5, finance systems6-7, applied sciences and engineering systems8-9-10, secure communication and 
information processing systems11.  Moreover however, there are many works that focus on the chaotic behavior of 
two-dimensional 12-13-14-15 and three-dimensional 16-17-18-19 discrete maps. Also known as, the study of chaotic 
behavior of cubic discrete map is a very interesting branch in dynamical systems such as for example in literature20, 
H. R. Dullin and J. D. Meiss studied the dynamical behavior a new two-dimensional area-preserving cubic discrete 
map with spatial symmetry which displayed complicated behavior. This paper has reported a further investigation 
into a two-dimensional discrete cubic chaotic map with symmetry and rarely observed phenomenon: the existence 
of both, symmetric chaotic attractors and some different type of bifurcations such as symmetry bifurcation, flip 
bifurcation, Hopf bifurcation and symmetry breaking bifurcation. The new map generating complicated non-linear 
physical phenomena and capable of generating symmetric chaotic attractors from different initial conditions and 
through different bifurcation parameter values. Dynamical behavior has been reported within some bifurcation 
parameter values range. The fundamental dynamical behaviors, including largest Lyapunov exponents, bifurcation 
analysis and phase portraits are also simulated numerically when the bifurcation parameter varied to verify map 
behaviors. 
 
2. The noval two dimensional cubic map  
 
The general equation of the two-dimensional cubic map given by:  
 

(
�̅�
�̅�) = (

𝑎₀ + 𝑎₁𝑥 + 𝑎₂𝑦 + 𝑎₃𝑥² + 𝑎₄𝑦² + 𝑎₅𝑥𝑦 + 𝑎₆𝑥²𝑦 + 𝑎₇𝑥𝑦² + 𝑎₈𝑥³ + 𝑎₉𝑦³

𝑏₀ + 𝑏₁𝑥 + 𝑏₂𝑦 + 𝑏₃𝑥² + 𝑏₄𝑦² + 𝑏₅𝑥𝑦 + 𝑏₆𝑥²𝑦 + 𝑏₇𝑥𝑦² + 𝑏₈𝑥³ + 𝑏₉𝑦³
)         (1) 

 

Where (𝑥, 𝑦) ∈ ℝ² and (𝑎𝑖 , 𝑏𝑖)0≤𝑖≤9 ∈ ℝ20 are bifurcation parameters. The two-dimensional cubic maps are 
classified according to their number of nonlinearities and the first case of one cubic non-linearity is defined by:  
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(
�̅�
�̅�

) = ( 𝑦

𝑎𝑦−𝑎𝑥²𝑦
)                                                                                                               (2)     

Where x and y are the state variables of the map, and a  is the bifurcation parameter. For 𝑎 = 0, the map (2) reduces 
to a two-dimensional discrete linear map. The two-dimensional map (2) is defined by a linear function of one 

variable 𝑦 and a non-linear function cubic of two variables 𝑥 and 𝑦. The map (2) is defined for all points in the 

plane and the associated function of the map is of class 𝐶∞(ℝ²) and map (2) is symmetric under the coordinate 

transformation (𝑥, 𝑦) → (−𝑥, −𝑦). 
                                                                                                                                                                                                                                    

2.1 Local bifurcation results  
 
Briefly, the fixed points of map (1) are: 

(0,0) and    ± (√
𝑎−1

𝑎
 , √

𝑎−1

𝑎
) 

 and the Jacobi matrix of the map (2) evaluated at the fixed point (𝑥, 𝑦) is: 

𝐽(𝑥,𝑦) = (
0 1

−2𝑎𝑥𝑦 𝑎 − 𝑎𝑥²
) 

The characteristic polynomial of the Jacobi matrix 𝐽(𝑥,𝑦)is: 

𝑃(𝜆) = 𝜆² − (𝑎 − 𝑎𝑥²)𝜆 + 2𝑎𝑥𝑦 
By criteria in21, the trivial fixed point (0,0) of the map (2) is asymptotically stable if and only if the following 
conditions hold: 

1 − 𝑎 > 0,1 + 𝑎 > 0 
    or, equivalently, 

−1 < 𝑎 < 1 
For example, if we choose 𝑎 = −0.2 and −(0.01,0.01) then with this value the fixed point (0,0) is asymptotically 

stable and we have the following two eigenvalues 𝜆₁ = 0 and 𝜆₂ = −0.7 thus |λi(1≤i≤2)| <1 (see Fig. 1a). And if 

we choose 𝑎 = 0.7 and (0.01,0.01) then with this value the fixed point (0,0) is asymptotically stable, and we have 

the following two eigenvalues 𝜆₁ = 0 and 𝜆₂ = 0.7 thus |λi(1≤i≤2)| <1 (see Fig. 1b).   

 

 
 

Fig. 1 a: The output time series 𝒙 𝐚𝐧𝐝 𝒚 with −(𝟎. 𝟎𝟏, 𝟎. 𝟎𝟏) and 𝒂 = −𝟎. 𝟕𝟎. 
 

 
Fig. 1 b: The output time series 𝒙 𝐚𝐧𝐝 𝒚 with (𝟎. 𝟎𝟏, 𝟎. 𝟎𝟏) and 𝒂 = 𝟎. 𝟕𝟎. 
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Undoubtedly, the local stability of (0,0) is studied by evaluating the eigenvalues of the Jacobi 𝐽(0,0).Than one have 

the following results: 
 

    (a) |𝜆₂| < 1, if and only if −1 < 𝑎 < 1, map (2) is attracting at this fixed point. 

    (b) |𝜆₂| > 1, if and only if 𝑎 ∈ (−∞, −1) ∪ (1, +∞), map (2) is a saddle at this fixed point. 
 

By criteria in21, the fixed points ± (√
𝑎−1

𝑎
 , √

𝑎−1

𝑎
) of the map (2) are asymptotically stable if and only if the 

following conditions hold: 

1 − 1 + 2(𝑎 − 1) > 0, 
1 + 1 + 2(𝑎 − 1) > 0, 

1 − 2(𝑎 − 1) > 0 
    or, equivalently, 

1 < 𝑎 <
3

2
 

 

For example, if we choose 𝑎 = 1.25 and (0.01,0.01) then with this value the fixed  points  ±(0.44721 , 0.44721) 

are asymptotically stable, and we have the following two eigenvalues 𝜆₁ = 0.5 − 0.5𝑖 and 𝜆₂ = 0.5 + 0.5𝑖 thus 

|λi(1≤i≤2)| <1 (see Fig. 2a).  And if we choose 𝑎 = 1.4 and (0.01,0.01) then with this value the fixed points 

±(0.53452 , 0.53452) are asymptotically stable, and we have the following two eigenvalues 𝜆₁ = 0.5 − 0.74𝑖  and 

𝜆₂ = 0.5 + 0.74𝑖 thus |λi(1≤i≤2)| <1 (see Fig. 2b). 

 

 
 

Fig. 2 a: The output time series 𝒙 𝐚𝐧𝐝 𝒚 with (𝟎. 𝟎𝟏, 𝟎. 𝟎𝟏) and 𝒂 = 𝟏. 𝟐𝟓. 
 

 
 

Fig. 2 b: The output time series 𝒙 𝐚𝐧𝐝 𝒚  with (𝟎. 𝟎𝟏, 𝟎. 𝟎𝟏) and 𝒂 = 𝟏. 𝟒𝟎. 
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Clearly, the local stability of points  ± (√
𝑎−1

𝑎
 , √

𝑎−1

𝑎
) is studied by evaluating the eigenvalues of the Jacobi 

𝐽
±(√

𝑎−1

𝑎
 ,√

𝑎−1

𝑎
)
.  

If 𝑎 ∈ (−∞, 0) ∪ (1,
9

8
) the eigenvalues of 𝐽

±(√
𝑎−1

𝑎
 ,√

𝑎−1

𝑎
)
 are:  

λ₁= 
1−√9−8𝑎

2
  and   𝜆₂ =

1+√9−8𝑎

2
. 

 
Than one have the following results: 
 

    (a) |𝜆₁| < 1 and |𝜆₂| < 1 if and only if 1 < 𝑎 <
9

8
 , map (2) is attracting at this fixed point. 

    (b) 𝜆₁ = 𝜆₂ =
1

2
< 1 if and only if 𝑎 =

9

8
, map (2) is attracting at this fixed point. 

    (c) |𝜆₁| > 1 and |𝜆₂| < 1 or (|𝜆₁| < 1 and |𝜆₂| > 1), impossible, map (2) is not a saddle at this fixed point. 

    (d) |𝜆₁| > 1 and |𝜆₂| > 1, if and only 𝑎 < 0, map (2) is repelling at this fixed point. 
 

If 𝑎 >
9

8
 the eigenvalues of 𝐽

±(√
𝑎−1

𝑎
 ,√

𝑎−1

𝑎
)
 are: 

λ₁= 
1−𝑖√−(9−8𝑎)

2
  and  𝜆₂ =

1+𝑖√−(9−8𝑎)

2
. 

 
Than one have the following results: 
 

    (a) |𝜆₁| < 1 and |𝜆₂| < 1, if and only if  
9

8
< 𝑎 <

3

2
, map (2) is attracting at this fixed point. 

    (b) 𝜆₁ = 𝜆₂ =
1

2
< 1  if and only if 𝑎 =

9

8
, map (2) is attracting at this fixed point. 

    (c) |𝜆₁| > 1 and |𝜆₂| < 1 or (|𝜆₁| < 1 and |𝜆₂| > 1),  impossible, map (2) is not a saddle at this fixed point. 

    (c) |𝜆₁| > 1 and |𝜆₂| > 1, if and only 𝑎 >
3

2
, map (2) is repelling at this fixed point. 

 
2.2 Bifurcation and attractors results  
 
In this section, the dynamical behaviors of the map (2) are obtained through numerical computation and 
simulations. There are several possible ways for a discrete map to make a transition from regular behavior to chaotic 
behavior. Bifurcation diagrams display these routes to determine the long-time behavior and chaotic zones, we 

numerically compute the bifurcation diagrams and largest Lyapunov exponent in the interval[−1.99,1.99].  Figures 
3 and 4 shows respectively, the bifurcation diagram and the Lyapunov exponent spectrum diagram of map (2). 
Figures 5 and 6 illustrate respectively some observed of attractors generated from the two symmetrical 

±(0.01,0.01) initial conditions and for some symmetrical ±𝑎 bifurcation parameters values. Figures 5 represents 

the attractors generated from the negative −(0.01,0.01) initial condition and for some negative bifurcation 

parameter values  𝑎. Figures 6 represents the attractors generated from the positive (0.01,0.01) initial condition 

and for some positive bifurcation parameter values 𝑎. The left column attractors and chaotic attractors in Figures 5 
contact with each other at the origin in the quadrant 2 and 4 of the x-y plane, which are symmetric about the origin. 
Similarly, the right column attractors and chaotic attractors in Figures 6 contact with each other at the origin in the 
quadrant 1 and 3 of the x-y plane, which are symmetric about the origin. 
 

(a)   −1.99 ≤ 𝑎 < −1.50, map (2) is chaotic (LEs >0, see Fig. 5c, Fig. 5d, Fig. 5e and Fig. 5f), periodic windows  
exists in the chaotic zone (LEs ≤0, Fig. 5a and Fig. 5b). 

(b)    𝑎 = −1.50, the Hopf bifurcation occurs at this point (see Fig. 4a). 

(c)    −1.50 < 𝑎 < −1, the map (2) is period-2 attractor (LEs <0, see Fig. 4a). 

(d)    𝑎 = −1, the Flip bifurcation occurs at this point (see Fig. 4a). 

(e)    −1 < 𝑎 < 0, map (2) is period-1 (LEs <0, see Fig. 4a). 

(f)    0 ≤ 𝑎 < 1, map (2) is period-1 (LEs <0, see Fig. 3a). 
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(g)    𝑎 = 1, the symmetry-breaking bifurcation occurs at this point. If the initial condition is (0.01,0.01), the first 

branch occurs (see Fig. 3a), if the initial condition is −(0.01,0.01), the second branch occurs (see Fig. 4a). 

(h)    1 < 𝑎 < 1.50, map (2) is period-1 attractor (LEs <0, see Fig. 3a). 

(i)    𝑎 = 1.50, the Hopf bifurcation occurs in the map (2) (see Fig. 3a). 

(j)    150 < 𝑎 < 1.99, map (2) is chaotic (LEs >0, see Fig. 6c, Fig. 6d, Fig. 6e and Fig. 6f), periodic windows exists 
in the chaotic zone (LEs ≤0, Fig. 6a and Fig. 6b). 
 

 
 

Fig. 3 a: Bifurcation diagram   and   Fig. 3b: Lyapunov exponent    for 𝒂 ∈  [ −𝟏. 𝟗𝟗, 𝟏. 𝟗𝟗] with 

(𝟎. 𝟎𝟏, 𝟎. 𝟎𝟏). 

 
 

Fig. 4 a: Bifurcation diagram   and   Fig. 4b: Lyapunov exponent    for 𝒂 ∈  [ −𝟏. 𝟗𝟗, 𝟏. 𝟗𝟗] with 

−(𝟎. 𝟎𝟏, 𝟎. 𝟎𝟏). 

 
 

Fig. 5 a: a = −1.716                          Fig. 6 a: a = 1.716 

 
 Fig. 5 b: a = −1.75                           Fig. 6 b: a = 1.75 
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      Fig. 5 c: a = −1.80                            Fig. 6 c: a = 1.80 

 
      Fig. 5 c: a = −1.85                            Fig. 6 c: a = 1.85 

 
   Fig. 5 d: a = −1.90                            Fig. 6 d: a = 1.90 

 
    Fig. 5 e: a = −1.95                            Fig. 6 e: a = 1.95 
 
3. Conclusin  
 
This short paper deals with the existence of both symmetric chaotic attractors and some different type of 
bifurcations such as symmetry bifurcation, flip bifurcation, Hopf bifurcation and symmetry breaking bifurcation of 
a simple two-dimensional symmetry discrete chaotic cubic map of the plane. Dynamical behavior has been reported 
within some bifurcation parameter values. The basic dynamical behaviors, including stability, Lyapunov exponents 
spectrum, bifurcation analysis and phases portrait are also illustrated to verify map behaviors. 
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