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Abstract: The Continuous Two Step Trigonometrically-Fitted Second Order Method (TSTSOM) is used in this study 
to solve an oscillating problem of ordinary differential equations. The coefficients of the developed approaches are 
determined by the approximate solution’s frequency and step size, a discrete trigonometrically -fitted second order 
ordinary differential equation was recovered as a by-product. To demonstrate the method’s usefulness and efficiency, 
the method’s stability and other properties qualities will be described and implemented to solve linear and nonlinear 
initial value oscillatory problems. 
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1. Introduction 
 

Mathematical modelling isacrucialtechnique for analyzing wide rangeofreal-world problems involving 
differential equations, spanning from physics, meteorology, and engineering to chemistry, biology, and 
social sciences. Differential equations are equations in which the dependent and independent variables 
have differential coefficients. Ordinary and partial differential equations are the two types of differential 
equations. Ordinary differential equations (odes) are differen-tiale equations in which the unknown 
parameter is afunction of one independent variable, whereas partial differential equations are those 
involving two or more independent variables (pdes).In Science and Engineering usually, mathematical 
models are developed to help in the understanding of physical phenomena. These models often yield 
equations that contains some derivative of an unknown function of one or several variables. In what 
follow, we consider a numerical solution of general second-order IVP soft he form 
 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′), 𝑦(𝑥0) = 𝑦0, 𝑦′(𝑥0) = 𝑦′
0

, 𝑥 ∈ [𝑥0, 𝑥𝑛]                                     (1) 

 
where f satisfies the Lipschitz theorem. 

 
For the solution of a number of problems, numerical approaches based on the usage of polynomial 
functions have been presented (1).Adeniran and Ogundare(2015) offered a block hybrid technique for the 
direct integration of second order IVP whose solutions oscillate, and Ngwane and Jator (2013) proposed a 
hybrid block method for the system of first order IVP including oscillatory problems. Sanugi and Evans 
proposed the leap frog approach and the Runge-Kutta method, whereas Neta (1986) constructed families 
of backward differentiation equations. All of these techniques were implemented in a step-by-step manner. 
 
Despite their success, these methods have some drawbacks, including sensitivity to frequency changes, the 
necessity that the Jacobean’s Eigen values be wholly magi-nary, and computing burden. 
 
Psihoyios and Simos (2003 and 2005) proposed trigonometrically fitted schemes for the solution of 
oscillatory problems that are applied in predictor-corrector mode based on the well-known Adams-Bash 
forth method as predictor and Adams-Moulton as corrector, in the spirit of Kayode and Adegboro (2018) 
proposed predictor-corrector for solving second order ordinary differential equations.The method sarevery 
expensive to implement, require more human labor,andhavea lower level of accuracy. The purpose of this 
study is to develop a Discrete Trigonometrically Fitted Second Method (DTSM).  
 
This is accomplished by firstestablishinga TSCTM, which then gives adiscrete method that is used as a 
DTSMand uses the solution’s frequency as a priori knowledge. TSCTM, in particular, is made up of a 
collection of continuous functions, whereas DTSM is a by-product of TSCTM. Because the coefficients of 
the Continuous Trigonometric Second method TSCTM are functions of frequency and step size, the  
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suggested technique’s solutions are extremely accurate if (1) has periodic solutions with known frequencies. 
The TSDM is utilized to produce the approximation yn+1to the exact solution (xn+1) on the interval [xn, 
xn+1], as described in (Ngwane and Jator 2013; Ng-wane and Jator 2014).  h = xn+1xn, h = xn+1xn, h = 

xn+1xn, On a partition [a, b], n = 0, . . . , N1, where a, bϵR,h is the constant step size, n is a grid 
indexandN>0isthenumberofsteps 
 
Thefollowingisa breakdown of the paper’s structure.Wee stablishatrigono metric basisre presentationU(x) 
forth exact solutiony(x)in Section1.1.1” Derivation of the Method”. create a TSCTM for problem-solving (1).  
The TSCTM’s error analysis and stability are detailed in Section 1.2” Error analysis and stability”. Section 
1.3 ”Numerical examples” contains numerical examples that demonstrate  the TSTSOM’s accuracy and 
efficiency. Finally, Section 1.4” Conclusion, “we make some closing remarks. 
 
1.1.1 Derivation of the Method. 

 
Two Steps continuous Trigonometrically-fitted Methods (TSCTM) is obtained by approximating the exact 
solution y(x) by searching the solution y(x, u), which resultsinadiscretemethodasaby-product. The type of 
method is 
 

𝑦(𝑥, 𝑢) = ∑ 𝑎𝑗𝑥𝑗 + 𝑎𝑘+1𝑠𝑖𝑛(𝑤𝑥) + 𝑎𝑘+2𝑐𝑜𝑠(𝑤𝑥)𝑘
𝑗=0 (2) 

 
Will be used as abasis function to approximate the solution of the second order initial value problems 
of the form 
 
Thesecond derivative of (2) is given as: 
 

𝑦′′(𝑥, 𝑢) = ∑ 𝑗(𝑗 − 1)𝑎𝑗𝑥𝑗−2 − 𝑤2𝑎𝑘+1𝑠𝑖𝑛(𝑤𝑥) − 𝑤2𝑎𝑘+2𝑐𝑜𝑠(𝑤𝑥)𝑘
𝑗=0 (3)      

 
Through interpolation of (2)at xn+j,j=0,1, collocation of (3) at xn+j, j =0(2)k to obtain 
2k+1system of equation 
 

𝑦(𝑥𝑛+𝑗, 𝑢) = 𝑦𝑛+𝑗 , 𝑗 = 0(1) 
𝑑2

𝑑𝑥2 𝑦(𝑥𝑛+𝑗 , 𝑢) = 𝑓𝑛+𝑗, 𝑗 = 0(1)𝑘                               (4)                                                

 
 

Solving the system equation (4) by Crammer’s rule to obtain aj, j  = 0, 1, 2, 3, 4.Our continuous TSCTM is 
constructed by substituting the values of aj’s into equation (2).After some algebraic manipulation, the 
TSCTM is expressed in the form 
 
yn+k=αn(x,w)+αn+1(x,w)+h2(βn(x,w)fn+βn+1(x,w)fn+1+βn+2(x,w)fn+2(5) 

 
w is the frequency ,αn(w,x),αn+1(w,x),βn(w,x),βn+1(w,x),βn+2(w,x) are continuous coefficients. The 
continuous coefficients in equation (5) is used to generate the method of the form in Equation (2). 
Thus, evaluating (5) at x = xn+2 and letting u=wh,we obtain the coefficients of (2) as follows

 
(2cos(u)+u2 2)sin(u) 

β0=
((−2(cos(u)−1)sin(u)))2 

(6)
 

 
cos(u)u2+2cos(u)2 

β1=                     
2(cos(u))2u−2(cos(u))2+2cos(u)−u−1 

 
−u2−2cos(u)+2 

 
                                    β2= 2cos(u)−2 
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1 
6 120 3024 86400 2661120 59439744000 

 
 
1.2 Error Analysis and Stability 
 
Local Truncation Error: 
 
The Taylorseries is used for small values of u (seeSimos(2007)).Thus the coefficients in equation (6) can be 
expressedas 
 

1 
β0= 

12 

u2+ 
1

 
240 

u4+ 
1

 
6048 

u6+ 
1

 
172800 

u8+ 
1

 
5322240 

u10+ 
691 

118879488000 

u12 

 
 

β =4−
5
u2+

1 
u4+

1  
u6+

1 
u8+

 1 
u10+

 691 
u12 

 
 

1 
β2= 

12 

u2+ 
1

 
240 

u4+ 
1

 
6048 

u6+ 
1

 
172800 

u8+ 
1

 
5322240 

u10+ 
691 

118879488000 

u12 

(7) 
 

For practical computations when u is small, it is advisable to use the series expansion 
(7).ThustheLocalTruncationErrorfor method (6) subject to equation (7)is obtained as 
 
 

ℎ6

6048
(𝑤2𝑦4𝑥𝑛 + 𝑦6(𝑥𝑛)) + 08 

 

ℎ6

3024
(𝑤2𝑦4𝑥𝑛 + 𝑦6(𝑥𝑛)) + 08 

 

ℎ6

6048
(𝑤2𝑦4𝑥𝑛 + 𝑦6(𝑥𝑛)) + 08
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The local truncation error are (
1

6048
,

1

3024
,

1

6048
) and is of at lease order

Stability Properties 
 

 

Proposition 1. The trigonometrically-fitted second derivative method (7) is applied to a test equation 
yrr=−λ2y,where λ is are al constant (see Simos 2002), it yields 
 

𝑦′′ = 𝑀(𝛾2; 𝑢)𝑦𝑛+1 , 𝑦 = ℎ𝜆; 𝑢 = 𝑘ℎ                                                           (8) 
 
with 

𝑀(𝛾2; 𝑢) =
𝐴0 + 𝛾2𝛽0

𝐴1 − 𝛾2𝛽1
                                                                                                       (9)

 (10)
 

Where the matrix M (γ2; u) is the amplification matrix which determines the stabilityofthemethod. 
 

Proof. We begin by applying (6) to the test equation yrr=λ2y respectively, by letting γ = hλ, u = kh, we 
obtain a linear equation which is used to solve for yn+2 with(9)as consequence. 
 

Definition 1. A region of stability is a region in the γ-u plane, in which therationalfunction𝑀(𝛾2; 𝑢) ≤ 1 
 
Definition2.The method (5)is zero stable provided the root of the first characteristics polynomial have 
modulus less than or equal to unity and those of modulus unity are simple (Lamberts1973). 
 
Definition 3. Method (5) is consistent if it has order p >1 (Kayode and Adegboro (2018). The TSCTM is 
consistent as it has order p >1 and zero stable,  
 
Hence convergent. Since Convergence=Zero stability consistency 
 
Linear Stability and Region of Absolute Stability of the Method Themethod is zero stable provided the 
roots Rj,j=1,2,3of the first characteristic polynomial ρ(R)s pecified by 
 

ρ(R)=r2−2r+1=0forr=1,1and the multiplicity does not exceed1(seeJatoretal.(2019)). 
 

 

 
 

Figure1:2 D plot for Zero Stability Result showing the accuracy of the new method TSCTM 
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Region of Absolute Stability of the Method 
 
 

 
 
Figure 2: Region of Absolute Stability for TSCTM 
 
1.3 Numerical Examples 
 
The performance and accuracy of the newly developed TSCTM are discussed in this part for a range of 
well-known oscillatory IVPs, both linear and nonlinear issues.  For the computation, the fitting frequency 
of each problem is utilized as the default frequency. The approximation solutions’ absolute errors or 
maximum errors are estimated and compared to results from existing approaches in the litera -ture. r(t) 
represents an error of the kind rast10t. All calculations were carried out using written Maple 2016 and 2017 
codes, which were run on a Windows 8.1computer. 
 
Example1 

 
 

𝑦′′ = −100 + 99 sin(𝑥) , 𝑦(0) = 1, 𝑦′(0)
= 11, 𝑥 ∈ [0,1000], 

ℎ =
1

3200
, 𝑤 = 5000

 
 

 
 
wheretheanalyticalsolutionisgivenby 
 
y(x)=cos10x+sin(10x)+sinx 
 
Table1: Table forthenewmethod 

 
 

N y-exact y-computed ErrorsinTSCTM 

1000 1.00206074108828 1.00206191363586 1.17254758e−6 

2000 1.00171752866070 1.00171840801032 8.7934962e−7 

4000 1.00137480457620 1.00137480457623 5.8615198e−7 

8000 1.00103081040944 1.00103120115695 3.9074751e−7 

16000 1.00068730464678 1.00068749999022 1.9534344e−7 

32000 1.00034370116678 1.00034379883829 9.767151e−8 
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Table 1 shows the results of problem 1 when computed with the method. The iteration (N) was increased 
from 1000 to 32000. The results show that increase initerationimprovestheaccuracyofthemethod.  
 
Example2 
 
ConsidertheScalartestequation 

𝑦′′ = 𝑤2𝑦, 𝑦(0) = 1, 𝑦′(0) = 0, 𝑤 = 10, ℎ =
𝜋

200
 

Exacty(x)=coswx 
 
Table 2: Result showing the accuracy of the new method TSCTM 
 

x y-exact y-computed ErrorsinTSCTM 

5π 0.999876521928723 0.999999999999992 2.469713e−05 

10π 0.999506118208559 0.999999999999992 4.938817e−05 

15π 0.998888880312983 0.999876491416312 9.876111e−05 

20π 0.998024960672684 0.999506057182589 1.481096e−04 

25π 0.996914572637924 0.999135577193974 2.221005e−04 

30π 0.995557990425848 0.998518354528637 2960364e−04 

 
Table2 shows the computed result for the new method, error signifies the efficiency of the new method 
solved with problem 2. 

 
Example3 

𝑦′′ = 𝑤2𝑦, 𝑦(0) = 1, 𝑦′(0) = 2, 𝑤 = 10, ℎ =
𝜋

200
 

Exact y(x)=sinwx 
 
In comparison to 3N + 1 and 4N function evaluations in N steps, this requires only3N + 1 function 
evaluations in N stages. For example, in the continuous scheme, ifn = 0, y1 is obtained on the subinterval 
[x0; x1], because y0 is known from the IVP; similarly, if n = 1, y2 is obtained on the sub interval [x1; x2], 
because y1 is  
 
Known from the previous computation, and soon until were ach the final sub interval. As a result, this 
strategy is more effective. 

 
Table3: Result showing the accuracy of TSCTM 
 

x y-exact y-computed Errorsin TSCTM 

5π 0.996733651293647 0.996980234565711 2.465833e−05 

10π 0.993221153089616 0.993714258729819 4.931056e−05 

15π 0.989463372820915 0.990447879558909 9.845067e−04 

20π 0.985461238494462 0.986936903191648 1.475665e−03 

25π 0.981215738461914 0.983425493233487 2.209755e−03 

30π 0.976727921175581 0.979671220300475 2.943299e−03 
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Table 3 shows the computed result for the new method, error signifies the effi-ciency of the new method 
solved with problem 3. 
 
Example 4 
 

𝑦′′ = (
2498                   4998

−2499         − 4999
) 𝑦(𝑡), 𝑦(0) = (

2

−1
) , 𝑦′(0) = (

0

0
) , 0 ≤ 𝑡 ≤ 100

 
Exact solution :(2cos(t),−sin(t))t 
 
Table4: Result showing the accuracy of TSCTM 
 

N y-exact y-computed ErrorsinTSCTM 
max||yi−y(xi)|| 

10 1.99999900000008 2.000000000000630 6.3e−13 

40 1.99999600000133 2.000000000000274 2.7e−12 

80 1.99999900000675 1.999999000000100 1.0e−12 

120 1.99998400002133 1.999996006024520 4.5e−12 

180 1.99997500005208 1.999995009029670 2.9e−12 

220 1.99996400010800 1.999984012108890 8.8e−11 

 
Table 4 above shows the computed result for the new method TSCTM, error signifies the efficiency of the 
new method solved with problem 4 
 
Example5 
 
(PeriodicProblem)VandeVyver 
 

𝑦1
′′ = 𝑦1 +

1

100
cos(𝑥) , 𝑦1(0) = 1, 𝑦1

′(0) = 1 

𝑦2
′′ = 𝑦2 +

1

100
sin(𝑥) , 𝑦2(0) = 0, 𝑦1

′(0) = 0.9995, 𝑥𝑒𝑛𝑑 = 10 

 
With the theoretical solution :y1(x)=cos(x)+0.0005xsin(x),y2(x)=sin(x)0.0005cos(x) 
 
Table5: Result showing the accuracy of TSCTM 
 

N y-exact y-computed TSCTM 
max||yi−y(xi)|| 

0.1 0.999999500500042 0.000999498751775049 4.98251761e−07 

0.2 0.999998002000666 0.00199899950324900 1.99750245e−06 

0.3 0.999995504503368 0.299849910609906 4.49460223e−06 

0.4 0.999992008010646 0.399800270764537 7.99469593e−06 

0.5 0.999987512525990 0.00499750516068165 1.24926327e−05 

0.6 0.999982018053892 0.599701361141322 1.79955544e−05 

0.7 0.999975524599842 0.00699652091374632 2.44963093e−05 

0.8 0.999968032170325 0.00799603621277948 3.20040361e−05 

0.9 0.999959540772827 0.00899555036352342 4.05095821e−05 

1.0 0.999950050415832 0.00999507450998187 5.00240831e−05 

 
Table 5 shows the computed result for the new method TSCTM, error signifies the efficiency of the new 
method solved with problem 5. 

− 
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Table 6: Comparison of the new error with Simon.Ngwaneand Jator (2013) 
 

N Simos (1998) NgwaneandJator(2013) newmethodTSCTM 

1000 1.4e−1 2.14e−03 8.83e−04 

2000 3.4e−2 5.98e−05 1,17e−05 

4000 1.1e−3 2.06e−05 1.17e−06 

8000 8.4e−5 1.26e−06 8.79e−07 

 
Table 6 shows the comparison for computed error for the new method TSCTM,  error signifies the 
efficiency of the new method solved with problem 1. 
 

 
 
 
Figure3: Efficiency curve k=2forexample1 

 
Table 7:Comparison of the new error with AliShorki(2012).  
 

 
 

x AliShorki (2012) TSCTM 

5π 2.3659e−04 2.469713e−05 

10π 5.1547e−04 4.938817e−05 

15π 6.2689e−04 9.876111e−05 

20π 8.3654e−04 1.481096e−04 
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Table 7 above shows the comparison table error for the new method TSCTM,error  signifies the efficiency 
of the new method solved with problem 3 over existing method. 
 
Table8: Comparison of the new error for example 4 with Nguyenetal.(2007). 
 

x Nguyenetal.(2007) TSCTM 

10 3.3e−12 6.3e−13 

40 - 2.7e−12 

43 0.9−11 - 

80 3.7e−12 1.0e−12 

 
Table 8 above shows the comparison table; error for the new method, error signifies the efficiency of the 
new method solved with problem 4 over existing method. 
 
 

 
 
Figure 4: Efficiency curve for example 3 
 
Table9: Comparison of the new error for example 5 with Nguyenetal.(2012) 
 

x Nguyen. 
etal(2007) 

x TSCTM 

73  10 6.3e−13 

143 9.0−12 43 2.7e−12 

170 3.7e−12 80 1.0e−12 

 
Table 9 above shows the comparison table, error for the new method signifies the efficiency of the new 
method solved with problem 5 over step length of the existing method.  
Example 6  
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dt 

 
 
ResonanceVibration of a Machine 
 
A stamping machine applies hammering forces on metal sheets by a die attached to  the plunger which 
moves vertically up and down by a fly wheel makes the impact force on the metal sheet and there fore 
the supporting base, intermittent and cyclic. The bearing base on which the metal sheet is situated has a 
mass, M = 2000kg.The force acting on the base follows a function’s(t) = 2000sin(10t),in whicht=time in 

seconds. The base is supported by an elastic pad with an equivalent spring constant k = 2 ∗105N/M. 
Determine the differential equation for the instant a neous position of the base y(t) if the baseisinitially 
depressed down by an Amount 0.1m. 
 
Solution:The mass-spring system above is modeled as differential equation: The Bearing base 
mass=2000kg 

 

Spring constant k=2∗105N/m 
 

i.e.ma=𝑚𝑦′′=2000sin(10t);wherea=𝑦′′ 
 

Force (ma) on the metal sheet=𝑚
𝑑2𝑦

𝑑𝑡2 = 𝑚𝑦′′ 

 
Initialconditions on the system are 
 

y(t0)=y0;dy|t=0=𝑦′(𝑡0)=𝑦′(0);t0=0,𝑦′(𝑡0)= 0.1 
 
There fore, the governing equation for the instant aneous 
position of the basey(t)isgivenby 
 

𝑀𝑦′′+ky=F(t);y(t0)=y0,𝑦′(𝑡0) = 𝑦0 
 
The oretical solute on: 
 
 

1

10
cos(10)𝑡 +

1

200
sin(10)𝑡 −

t

10
cos(10) t ,, 
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Table10: Table for problem 7 TSCTM, showing the accuracy of the new method 
 

N y-exact y-computed ErrorsinTSCTM 
max||yi−y(xi)|| 

0.01 0.0999999500016710 0.100000099994178 1.499925070e−07 

0.02 0.0999998000134000 0.999999999996060 1.999862060e−07 

0.03 0.0999995500453379 0.0999999000292754 3.499839375e−07 

0.04 0.0999992001077328 0.0999996000212815 3.999135487e−07 

0.05 0.0999982003653984 0.0999993000387002 5.498277629e−07 

0.06 0.0999982003653984 0.0999987999664171 5.996010187e−07 

0.07 0.0999975505816685 0.0999982999203376 7.493386691e−07 

0.08 0.0999968008703942 0.0999975997301152 7.988597210e−07 

0.09 0.0999959512423277 0.0999968995646254 9.483222977e−07 

0.10 0.0999950017083162 0.0999959992026629 9.974943467e−07 

 
Table 10 shows the computed result for the new method TSCTM, error signifies the efficiency of the new 
method solved with problem 6. 
 
1.4 CONCLUSION 
 
We have presented a TSCTM for solving periodic IVPs with a non-self-stating algebraic 3 order. The 
method convergence and accuracy were established, and the approach was evaluated with several standard 
oscillatory problems and found to be accurate and favorably compare to other ways in literature, as shown 
in Tables1-10 above, with the exception of Example 2 and 6, which has no competition. 
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