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Abstract: We give a model for particles which explains why particle properties are quantised. We define particles as 
pictures. We define a pi-minus, electron, electron antineutrino and a proton. We prove the model for electrons. We 
aslo show how to construct antiparticles. We show why Gravity is fundamentally different from the other forces. 
The model predicts the Electromagnetic field of a free electron. The model also predicts that antimatter will have 
attractive gravity with matter. 
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Introduction 
 
1. Defining a Pi-minus 

 
The circles of a pi-minus are arranged as follows: 

 

Figure 1.1 

where the Cn are circles on the "sphere" (Riemann sphere-anti sphere: RSS (an anti-Riemann sphere is a Riemann 
sphere made out of left-out points)) where the charges are encoded into. These circles goes around the RSS and a 
charge on each gets duplicated symmetrcly (so each one counts half the charge) so that there is balanced forces on 
the particle. The circle arrangement could be otherwise. 

The d quark is the southern hemisphere of the particle and the anti-up quark is the northen hemsphere. 

Each ccircle on the RSS looks like: 

 

Figure 1.2 
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The dotted half circles represent half circles on the half anti-Riemann sphere (ARS: a Riemann half sphere made of 
holes in spacetime). The solid half circles represent half circles on a half Riemann sphere. The little filled circles 
represent added points of space and the little circles represent holes in space. 

The quarks form a northern and southern area of the RSS but they extend into each other when the plane of the 
mass and color charges change. The opposite color charges keep the particle together. The dotted circles are circles 
of an anti-quark and the solid lines are circles of a quark. 

Note that the model predict that the particle has one mass world line, three charge world lines, two isospin 
worldlines, two color charge world lines and one speed charge worldline.  

We see that particle properties can only increase by adding a point, therefore it's properties are quantised (one 
cannot add half a point). 

A W- looks like a pi- just with left out points indicating it is an operator particle. 

We specify that the antiparticle has left-out space points where the particle has added points and vice versa (except 
for the following below). The two would therefore cancell into empty space.  Since it is an experimental fact that all 
the mass is converted to momentum of the two photons emitted, we require that mass in the antiparticle be also 
encoded with added points of space (thus it will be encoded onto the bottom half-Riemann-anti-sphere). This 
brings in a fundamental difference between gravity and the other forces. It also predicts antimatter will have 
attractive gravity with matter. 

2. Defining Electrons. 

I allow circles to rotate (spin) at different angular speeds for the electron to look the same only after 2 rotations. 

The electron picture follows from the pi-minus picture. 

An electron looks like: 

 

Figure 2.1 

The circles on the RSS looks like: 

 

Figure 2.2 
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Spin of an elecron is postulated to be spin of the electric charge circle. Then define the electric charge circle to 
rotate at one quarter the angular speed of the mass charge circle. This way the electron looks the same after two 
rotations of the mass circle. The spin for right-handed electrons is in the up direction in the figure. 

Even though the electron does not have color charge, I postulate that it nevertheless has internal color charges (i.e. 
not detectable color charge) since something must keep the particle together against the Coulomb repulsion of the 
electric charges. 

We proceed to write down the action based on Figure 2.2. We treat the charges as points. The Lagrangian (for the 
non-relativistic case) is (from [3]): 

L=sum_i(1/2)my˙_i^2 + sum_iqx˙´_i A_i - qφ       (1). 

where A and φ must also be in cylindrical coordinates and the derivation is with respect to time. 

We only need to specify a heilical path (since the electron spins) for the charges and plug it into y_i'( and )x'_i of (1). 
We parameterise the mass circle (in cilindrical coordinates): 

𝐲_1=k_2t𝐢_z          (2)  

thus: k_2 is the speed of the electron. 

Since the charge circle rotates at 1/4 the angular speed we include a factor of 1/4 in the parameterisation of the 
charge circle: 

𝐱´_1=r_0𝐢_r+(1/4)k_1f(t)𝐢_θ+ (3/4+k_2t)𝐢_z       (4)  

and: 

𝐱´_2=r_0𝐢_r+((1/4)k_1f(t)-π)𝐢_θ+ (3/4+k_2t)t𝐢_z      (5)  

and: 

𝐱´_3=k_2t𝐢_z          (6)  

where f(t)=t,f(0)=f(n2π) for n∈𝐍. Where f(t) resets to zero for t=n2π. We thus have three current densities: 

𝐉_i=(e/(9πl^3_p/4))𝐱˙´_i(t)=(4e/9πl^3_p)𝐱˙´_i(t)      (7)  

where i = 1, 2, 3. The superposition principle allows computing 𝐀_i and summing over i to obtain the total field. 
We use the observer position: 

𝐱  =r𝐢_r + θ𝐢_θ + z𝐢_z         (8)  

to compute 𝐀_i as follows: 

𝐀_i(𝐱,t)=μ_0int_(V´)(𝐉_i(𝐱´_i,t - (|𝐱 -𝐱´_i|)/c))/(4π|𝐱-𝐱´_i|) dv´_i  

or: 

𝐀_i(𝐱,t)=μ_0iiint_(V´)((4e/9πl_p^3_)𝐱˙_i(t-(|𝐱 -𝐱´_i|)/c))/(4π|𝐱-𝐱´_i|) r´_idz´_idr´_idθ´_i  

in cylindrical coordinates. 

We compute: |𝐱-𝐱(_1)´|=sqrt((r-r_0)^2+(θ-1/4(k_1f(t)))^2+(z-3/4-k_2t)^2) and set this equal to: sqrt(g_1(𝐫,t)) 
        (9) 

dr´_1=0dt,dz´_1=k_2 dt,dθ(_1)´=k_1f˙(t)dt  

and we get: 
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𝐀_i(𝐱,t)=μ_0(4e r^2_0k_1k_2)/(9πl_p^3_)iint(𝐱˙_i(t-(|𝐱 -𝐱´_i|)/c))/(4π|𝐱-𝐱´_i|) dt f˙(t)dt (10)  

and this collapses into a single integral: 

𝐀_1(𝐱,t)=μ_0(er^2_0 k_1k_2)/(9π^2l^3_p)int_(t_1)^(t_2)(𝐱˙_1(t-(|𝐱 -𝐱´_1|)/c))/(|𝐱-𝐱´_1|) f˙(t)dt  
         (11)  

 Integrating this is quite a mission, we will therefore calculate the integral by computer (see [4] for the App). 

𝐱˙_1(t-(|𝐱 -𝐱´_1|)/c)=(1/4)k_1f˙(t-g^(1/2)_1(𝐫,t)/c)(1-(1/2c)g^(-1/2)_1(𝐫,t)g˙_1(𝐫,t))𝐢_θ + k_2(1-(1/2c)g^(-

1/2)_1(𝐫,t)g˙_1(𝐫,t))𝐢_z =((2c-1)/8c)k_(1 )f˙(t-g_1(𝐫,t)/c)g˙_1(𝐫,t)/(sqrt(g_1(𝐫,t)))𝐢_(θ )+ k_2((2c - 

1)/2c)g˙_1(𝐫,t)g^(-1/2)_1(𝐫,t)𝐢_z    (12)  

 For 𝐀_2(𝐱,t) we use (11), with and the other expression for (9) and with: 

𝐱˙_2(t-(|𝐱 -𝐱´_2|)/c)=(1/4)k_1f˙(t-sqrt(g_2(𝐫,t))/c)(1-(1/2c)g^(-1/2)_2(𝐫,t)g˙_2(𝐫,t))𝐢_θ + k_2(1-(1/2c)g^(-

1/2)_2(𝐫,t)g˙_2(𝐫,t))𝐢_z        (17)  

so it produces nearly the same potential as 𝐀_1. 

For 𝐀_3(𝐱,t) we use (11), with (9) suitably adjusted and with: 

𝐱˙_3(t-(|𝐱 -𝐱´_3|)/c)=k_2(1-(1/2c)g^(-1/2)_3(𝐫,t)g˙_3(𝐫,t))𝐢_z    (18).  

Then the total potential follows by the superposition principle as the sum of the 3 potentials. Computer calculation 
shows a smooth function like an exponential for A_z (r)=A_(1z)(r)+A_(2z)(r)+A_(3z)(r) where the other variables 
are taken as constants, and piecewise-smooth (becoming discontinuous for large r) function for A_θ(r). A_z(θ) is 
like A_z(r). A_θ(z) is smooth with one unstable peak. A_z(z) is piecewise linear and continuous. These last two facts 
are very unexpected. A_θ(θ) is smooth. A_z(t) is a straight line. A_θ(t) is piecewise-smooth. 

To compute φ we use: 

φ_i(𝐱,t)=int_(V´)(ρ_i(𝐱´_i,t - (|𝐱 -𝐱´_i|)/c))/(4πϵ_0|𝐱-𝐱´_i|) dv´_i   (20)  

where the index i is a wordline number. Using (20) with: 

ρ_i(𝐱´_i,t - (|𝐱 -𝐱´_i|)/c)=(4e/9πl_p^3_)=𝐱/𝐱˙_i      (21) 

to find: 

φ_i(𝐱,t)=1/(ϵ_0)(er^2_0 k_1k_2)/(9π^2l^3_p)int_(V´)1/(|𝐱-𝐱´_i|) dv´_i   (22)  

or: 

φ_i(𝐱,t)=(er^2_0 k_1k_2)/(ϵ_09π^2l^3_p)int_(t_1)^(t_2)1/(|𝐱-𝐱´_i|) f˙(t)dt  (23)  

or: 

φ_1(𝐱,t)=(er^2_0 k_1k_2)/(ϵ_09π^2l^3_p)int_(t_1)^(t_2)1/(sqrt(g_1(𝐫,t))) f˙(t)dt (25).  

 

φ_2  is the same as (25) just with: 

sqrt(g_2(𝐫,t))=sqrt((r-r_0)^2+(θ-1/4(k_1f(t))-π)^2+(z-3r_0/2 - k_2t)^2)   (32)  

For i=3 we have φ_3  the same as (25) just with: 

sqrt(g_3(𝐫,t))=sqrt((r)^2+(θ)^2+(z-k_2t)^2)      (34).  
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Computer calculation shows: φ(r) is smooth with a peak close to r =0 and then it tends to zero.  

We may verify these by plugging the derivative of 𝐱_i, 𝐀_i(𝐱,t) and φ_i(𝐱,t) into δ(1) and integrate to time to find: 

δ𝑺≖0 (just take care to use: (e/3)𝐱˙´_i 𝐀_j - (e/3)φ_j for i ≠j). This is since the point of the particle moves in the 
field of the other two points. 

We may also compute the energy of the electron has as a result of these moving charges: 

W=(ϵ_0/2)𝐄_i⋅𝐄_i+(μ_0/2)𝐇_i⋅𝐇_i       (35)  

We need: 

μ_0𝐇_i=∇×𝐀_i  (36)  

thus the curl operator in cylindric coordinates: 

∇×𝐀_i=𝐢_r[1/r (∂A_iz)/(∂θ) - (∂A_(iθ))/(∂z) ]+ 𝐢_θ[- (∂A_iz_)/(∂r)]+𝐢_z[1/r ∂/(∂r)(rA_(iθ))] (37)  

thus: 

(μ_0/2)𝐇_i⋅𝐇_i=(1/2μ^_0)[(1/r (∂A_iz)/(∂θ) - (∂A_(iθ))/(∂z)^)^2+ (- (∂A_iz_)/(∂r))^2 + (1/r 
∂/(∂r)(rA_(iθ)))^2]^  

For the equation for (μ_0/2)𝐇_i⋅𝐇_i we have to solve the integral and computing these terms is an effort. Instead 
we will compute the integral directly on computer. I have written a Visual Basic App the reader can play with see 
[4]. Note that we can adjust k_1 as we please (k_2 is determined by the speed of the electron), so we need a way to 
fix k_1. The app gives an idea of the shapes of the graphs (r_0( and )l_P are not given their true values) just scaled 
appropriately. 

 We know H_θ (r) is not zero, but the computer says it is therefore we choose to integrate (11) symbolically so that 
∂A_z/∂r can be correctly computed. We discard higher order terms in the denominator (so this is just true for 
values of the variables larger than 1). We use integration by parts: 

𝐀_ (𝐱,t)=(μ_0er^2_0 k_1k_2)/(9π^2l^3_p)^[(𝐱˙_1 (t-(|𝐱 -𝐱´_1|)/c))/(|𝐱-𝐱´_1|)+(𝐱˙_2 (t-(|𝐱 -𝐱´_2|)/c))/(|𝐱-

𝐱´_2|) + (𝐱˙_3 (t-(|𝐱 -𝐱´_3|)/c))/(|𝐱-𝐱´_3|)] f(t)  

so: 

A_z(𝐫,t)=(μ_0er^2_0 k_1k_2)/(9π^2l^3_p)[k_2((2c - 1)/2c)g˙_1 (𝐫,t)g^(-1)_1(𝐫,t)+k_2(1-(1/2c)g^(-1)_2(𝐫,t)g˙_2 

(𝐫,t))+k_2(1-(1/2c)g^(-1)_3(𝐫,t)g˙_3 (𝐫,t))]f (t)  

and: 

A_θ (𝐫,t)=(μ_0er^2_0 k_1k_2)/(9π^2l^3_p)[(1/4)k_1f˙ (t-g^(1/2)_1(𝐫,t)/c)(1-(1/2c)g^(-1)_1(𝐫,t)g˙_1 

(𝐫,t))+(1/4)k_1(f )˙(t-sqrt(g_2 (𝐫,t))/c)(1-(1/2c)g^(-1/2)_2(𝐫,t)g˙_2 (𝐫,t))]f (t)  

 I will input these formulae into the code of the App and use the definition of differentiation to compute -∂A_z/∂r 
numericly on computer. We report about the H field; H_r (r) is zero and so are the other functions of H_r. H_θ (r) 
is also zero (I can't find an error in the code). H_z (r) is smooth and continuous and goes to zero for r large. H_z 
(θ) starts out smooth but then goes discontinuous in steps that get shorter. It goes to zero for large θ. H_z (z) is 
smooth and continuous. It starts off with a peak and then tends to zero. H_z (t) is discontinuous and rises in a 
curve, becoming nearly continuous for large t. It flattens off for large t. 

 We have: 

𝐄_i=-∇φ_i+_(∂𝐀_i)/(∂t)        (39)  

with Grad φ computed in cylindrical coordinates: 
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∇φ_i=𝐢_r(∂φ_i)/(∂r)+ 𝐢_θ1/r (∂φ_i)/(∂θ)+ 𝐢_z(∂φ_i)/(∂z)    (40)  

so: 

(ϵ_0/2)𝐄_i⋅𝐄_i=(ϵ_0/2)((-(∂φ_i)/(∂r))^2+1/(r^2)(-(∂φ_i)/(∂θ)+(∂𝐀_(iθ))/(∂t))^2+ (-(∂φ_i)/(∂z)+(∂𝐀_iz)/(∂t))^2) 
       (41) 

 To compute E_r(θ) we must compute: -∂φ/∂r. For this we compute the integrals (25) using integration by parts: 
choose: 

dv=(f )˙(t)dt  

u=g_1^(-1/2)(𝐫,t)+g^(-1/2)_2(𝐫,t)+g^(-1/2)_3(𝐫,t)  

 so: 

E_r (𝐫,t)=-(er^2_0 k_1k_2)/(ϵ_09π^2l^3_p)∂/(∂r)(f(t)∗(g_1^(-1/2)(𝐫,t)+g^(-1/2)_2(𝐫,t)+g^(-1/2)_3(𝐫,t)))  
         (42)  

using g_i(𝐫,t)=|𝐱-𝐱´_i (𝐫,t)|^2 we find: 

E_r (𝐫,t)=(er^2_0 k_1k_2)/(ϵ_09π^2l^3_p) f(t)∗((r-r_0)g_1^(-3/2)(𝐫,t)+(r-r_0)g_2^(-3/2)(𝐫,t)+r∗g^(-3/2)_3(𝐫,t)) 
        (43)  

with terms of higher order terms in the denominator left out in (42). Computer calculation shows: E_r(r) is like a 
1/r function, just ofsetted to the right. E_r(z) looks similarly, just moved to the right. E_r(θ) looks like a bell-shaped 
curve and is continuous and smooth. E_r(t) is highly discontinuous and makes a nice pattern in the plane. The 
pattern seems to be a mixture of bell-shaped curves and E_r(r) curves: the pattern stops close to the line: E_r(r). 

 Since we may choose k_1( and )k_2 we may choose them to exactly cancell l^3_p i.e. k_1=k_2=sqrt(l^3_p) so that 
(43) reduces to: 

E_r (𝐫,t)=(er^2_0 )/(ϵ_09π^2_) f(t)∗((r-r_0)g_1^(-3/2)(𝐫,t)+(r-r_0)g_2^(-3/2)(𝐫,t)+r∗g^(-3/2)_3(𝐫,t))  
         (44) 

For E_θ (r) we need: 

E_θ (𝐫,t)=-1/r (∂φ_)/(∂θ)+ (∂A_θ)/(∂t)  

We compute the derivatives easily on computer and report the results here. E_r (r) and E_r(θ) is smooth and 
continuous and runs like a bell shaped curve. E_r(z) is smooth and continuous and has a large peak and then goes 
to zero. E_r(t) is discontinuous. E_θ (r) is discontinuous. E_θ (θ)=0. E_θ (z) is discontinuous and negative for large 
z although it becomes more continuous as z gets larger. E_θ (t) is discontinuous and for largish t: is distributed 
between two values at a ratio of 1:2. E_z (r) and E_z(θ) is bell-shaped with small discontinuities. E_z(z) is smooth 
and continuous, starts out positive, then makes an (left-right inverted) “s” and goes negative and constant. E_z(t) is 
constant for large t with small discontinuities. 

Note that if we find a value for k_1 that implies faster than the speed of light rotation: this is no problem since the 
mass is concentrated on the axis of rotation and only space points are required to rotate faster than lightspeed. 

We prove that the electron is made of a Riemann Sphere-Antisphere: 

We notice that if the model for an electron is true, then there must be a direction along which an electron will not 
emit a photon. We must thus show that there is a direction in which an electron will not emit a photon. The shape 
of the Hydrogen atom can be as drawn in the following figure: 
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Figure 2.3 

We see that there is a direction (v) along which an electron will not jump, hence in the direction opposite v it will 
not emit a photon. Hence the model for the electron is proven. QED. 

3. Defining Electron Anti-neutrinos 

An electron antineutrino follows from the picture for a pi-minus. It looks like: 

 

Figure 3.1 

The circles of the electron antineutrino looks as follows: 

 

Figure 3.2 
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4. Defining protons. 

The two up quarks are like cups, one inside the other, and the down quark couples to a gluon that is bound to the 
area halfway between the two up quarks on the equator where the two "cups" end. See figure 4.1. 

 

Figure 4.1 

The down quark sits atop of this with its equator halfway between the two up quarks. Three gluons fills the space at 
the equator (as rings) and their intersection would make  upside-down Y-shapes. A consequence of this is that only 
one color is available for inter-nucleon forces and that a proton and neutron will bind with their opposite quark 
types facing each other. The two cups overlaps in reality as they are not the same color. 
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